PD-1 Cancer Immunotherapy

Gordon Freeman, PhD Professor, Department of Medical Oncology

Disclosure Information Gordon Freeman, PhD

I have the following financial relationships to disclose:

Intellectual Property related to the PD-1 / PD-1 Ligand pathway licensed non-exclusively to: Bristol-Myers-Squibb, Roche, Merck, Merck-Serono, Boehringer-Ingelheim, AstraZeneca, Novartis

Intellectual Property related to TIM-3 licensed to Novartis

Consultant for: Bristol-Myers Squibb, Novartis, Roche, Lilly, Seattle Genetics, Bethyl Labs, Xios, Quiet

Immunology has offered hope for curing cancer for 100 years

What is different now?

New Strategy

Blockade of pathways used by tumors to inhibit anti-tumor immunity

Checkpoint blockade

T cells are white blood cells that can kill cancer cells: more is better T cell clonal expansion

1000 T cells

18 divisions (6 days)

millions of T cells

T cell activation

Signal 1: Antigen recognition

• There are positive and negative second signals

The PD-1 Pathway Inhibits T Cell Activation

Identify the drug target: block PD-1/PD-L1

Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation

By Gordon J. Freeman,* Andrew J. Long,‡ Yoshiko Iwai,[§]
Karen Bourque,‡ Tatyana Chernova,* Hiroyuki Nishimura,[§]
Lori J. Fitz,‡ Nelly Malenkovich,* Taku Okazaki,[§] Michael C. Byrne,‡
Heidi F. Horton,‡ Lynette Fouser,‡ Laura Carter,‡ Vincent Ling,‡
Michael R. Bowman,‡ Beatriz M. Carreno,‡ Mary Collins,‡
Clive R. Wood,‡ and Tasuku Honjo[§]

J. Exp. Med. © The Rockefeller University Press • 0022-1007/2000/10/1027/08 \$5.00 Volume 192, Number 7, October 2, 2000 1027-1034

PD-1 = Programmed Death-1

- cloned from a CD3-activated T cell hybridoma undergoing activation-induced cell death (Honjo lab)
- Does not directly activate caspases and cause cell death or apoptosis; not like CD95 (Fas)
- Indirect effect on cell death by reduced cytokines, survival factors (less Bcl-xL, more BIM)

Why have negative signals like PD-1?

1. Maintain immune tolerance

- 2. Tune down the immune response after elimination of disease
- 3. Prevent too strong an immune response damaging tissues

Arlene Sharpe, Tasuku Honjo

PD-L2 is a second ligand for PD-I and inhibits T cell activation

Discovery may shed light on cancer's shield against the immune system

For years, a question has tantalized cancer researchers: why is the immune system, normally so adept at unmasking and eliminating foreign invaders and abnormal cells, not always spry enough to destroy tumor cells?

A new study by Dana-Farber scientists suggests an answer.

In a paper published in the March issue of Nature Immunology, investigators led by Gordon Freeman, Ph.D., of Adult Oncology report that a structure

PD-L1 on Breast cancer cell lines

PD-L1 in Cancer

- Expressed on cell surface of ~30% solid tumors and selected hematologic malignancies
- Inhibits anti-tumor immune responses

Brown = PD-L1

Rodig, Signoretti, McDermott; BWH & DFCI

In most cancer patients, only the immune response against cancer is suppressed. The immune response against infection is OK.

Common cold

PD-L1 expression

normal

Immune response

good

Lung cancer

lung cancer

Brown = PD-L1

suppressed

Why doesn't directly stimulating the immune response cure cancer?

Once the tumor gets ahead and expresses PD-L1, Immuno-inhibition is dominant and maintained by a feedback loop

Taube et al: Adaptive resistance

PD-1⁺ T cells at a PD-L1⁺ tumor interface

PD-1⁺ T cells

PD-L1⁺ melanoma

George Murphy, Scott Rodig, Gordon Freeman, BWH & DFCI

PD-1 or PD-L1 Blockade Stimulates anti-tumor T cell response

Antibodies in Clinical Trials

- Anti-PD-1
 - Nivolumab (BMS)
 - Pembrolizumab (Merck)
 - MEDI-0680 (AstraZeneca)
 - PDR001 (Novartis)
 - REGN2810 (Regeneron)
- Anti-PD-L1
 - Atezolimumab (Roche)
 - Durvalumab (AstraZeneca)
 - Avelumab (EMD Serono/Pfizer)
 - MDX-1105 (BMS)

Multiple other agents in development

Phase I clinical trial of anti-PD-1 antibody Nivolumab: Kidney Cancer cohort (34 patients)

- Generally tolerable: fatigue, rash, pruritus, diarrhea
 - Each line follows growth or shrinkage of tumor in one patient

Broad anti-tumor efficacy of anti-PD-L1/PD-1 inhibitors: Overall Response Rates

PD-1 Cancer Immunotherapy is different from chemotherapy

- Well tolerated: This is not chemotherapy or a cell poison!
 some nausea, no hair loss, no blood cell count decline.
- Good safety profile
- Most serious adverse events are autoimmune-mediated, like pneumonitis, colitis. Less than 10% of patients
- Physicians will have to learn to manage a different spectrum of adverse events than those seen in chemotherapy
- This can be community hospital medicine: half-hour intravenous drug infusion.

Better Quality of life: Squamous NSCLC: EQ-5D Utility Index

Higher scores indicate better health status.

Only time points that had PRO data available for ≥5 patients in either treatment arm are plotted on the graph.

^aBharmal M, Thomas J 3rd. Value Health. 2006;9:262–71. bPickard AS, et al. Health Qual Life Outcomes. 2007;5:70.

Better Quality of Life

 Reck said responding patients "remaining on treatment with nivolumab returned to population health-status norm, suggesting that prolonged survival occurs with a resumption of normal life"

Checkpoint works equally well in the aged

Meta-analysis of 6 Phase III PD-1 and CTLA-4 trials 2,078 younger patients < 65-70 years 1,224 older patients > 65-70 years

Younger: Hazard Ratio, 0.73; P<0.001

Older: Hazard Ratio, 0.72; P=0.004

T Funakoshi et al., SITC 2015

90 year old with metastatic melanoma and 4 brain metastases:

Treated with PD-1 mab

Predictive biomarkers are essential for getting the right treatment to the right patient.

PD-L1 expression in tumor increases the likelihood of response to PD-1/PD-L1 blockade

Nivolumab

Pembrolizumab

MPDL3280A

MEDI 4736

A new era in PD-L1 immunohistochemistry

Now at least 5 good PD-L1 IHC mAbs available

extracellular

intracellular

21% Discordancy between PD-L1 on Primary and Metastasis in RCC

- PD-L1 positivity was heterogeneous and almost exclusively detected in high nuclear grade areas (P < 0.001).
- Assessment as a predictive biomarker for PD-1 blockade may require analysis of metastatic lesions.
- Pathologists should select high grade tumor areas for PD-L1 IHC analysis to avoid false negatives.
- 20 positive
- 33 negative in primary & met
 - 53 cases

Callea et al. Cancer Immunol Res 2015;3:1158-1164

PD-L1 expression was heterogeneous even within individual RCC lesions

Low grade area High grade area

Callea et al. Cancer Immunol Res 2015;3:1158-1164

PD-L1 was almost exclusively detected in high nuclear grade areas (P < 0.001)

 PD-L1 expression on the tumor is not a good enough biomarker.

 Further analysis is needed to identify what biomarkers correlate with responsiveness to immunotherapy.

What does the immune system see in a tumor to attack?

The immune system recognizes protein coding changes in the tumor cell, called tumor neoantigens.

Two evolutionary processes in cancer:

1. DNA mutation

Rare driver mutations many passenger mutations

2. Immune evasion: PD-L1, IDO, TGF-β, IL-10, loss of MHC, others

Understanding immunology and genetics has identified groups that respond well to PD-1/PD-L1 therapy

- Highly mutated tumors (MSI, defects in DNA repair): 62%
- Genetically amplified PD-L1 and PD-L2 (Hodgkin): 87%
- With Viral antigens (HPV, Head and neck; Merkel)
- What other cancer types might respond well?

Why the enthusiasm for immunotherapy?

Data from Hodi et al., AACR 2016; Schadendorf et al. J Clin Oncol 2015

Moderate percentage but long-term

Chapman NEJM 2011

High percentage but short-term

Broad anti-tumor efficacy of anti-PD-L1/PD-1 inhibitors: Overall Response Rates

Why did T cells need PD-1 blockade to attack the tumor?

Anti-tumor immune response is a years long struggle.

The T cells had tried, failed, upregulated expression of inhibitory receptors and become "exhausted"

T cell exhaustion is more than PD-1

Exhausted tumor infiltrating lymphocytes express multiple immunoinhibitory receptors:

These are druggable targets for tumor immunotherapy

Where does checkpoint blockade function?

CTLA-4 in the lymph node

PD-1 in the tumor

The Future is Combination Therapy

T cell priming & activation

DEFICIT

naïve T cells

Insufficient priming/activation

THERAPEUTIC APPROACH

- Block multiple checkpoints (CTLA-4, PD-1, LAG-3, TIM-3)
- Activate stimulatory pathways (CD137, OX-40, CD27, ICOS, GITR)
- Administer stimulatory cytokines (IL-2, IL-12)

• PD blockade + other immunoinhibitor blockade: CTLA-4

PD-1 mAb doesn't block all immunoinhibitory possibilities

PD-L1: B7-1

PD-L2: Repulsive Guidance Molecule b (RGMb)

Summary of recent RGMb work

RGMb is a novel binding partner for PD-L2

 RGMb originally identified in the nervous system and has immune function in macrophages

RGMb and PD-L2 interaction promotes respiratory tolerance

• Targeting this interaction may provide therapeutic approaches for cancer, asthma and other immune disorders

Xiao et al., J Exp Med, 2014

Model for RGMb-PD-L2 signaling: BBRN supercomplex

Targeting RGMb in CT26 colorectal cancer immunotherapy

RGMb and PD-1 combination blockade increases mouse survival

Kaplan-Meier survival analysis

Yanping Xiao

Recognition & killing of cancer cells

DEFICIT

THERAPEUTIC APPROACH

Failure to overcome T cell suppression

Unleashing intrinsic T cell immunity is insufficient

Tumor burden/growth exceeds capacity for immune clearance

- Block multiple checkpoints (PD-1, PD-L1, LAG-3, TIM-3, CTLA-4)
- Activate stimulatory pathways (CD137, OX40, CD27, ICOS, GITR)
- Deplete/target immunsuppressive cells (Trea, MDSCs, M2)
- Target other suppressive mechanisms in microenvironment (IDO, TGF-β)
- Induce/Provide other anti-tumor immune cells (CARs, TCR-engineered T cells, NK cells)
- Reduction of tumor burden (Surgery, Radiation, Chemotherapy, Targeted therapy)

Can PD-L1 mAb help NK cells?

Human NK cell lysis of tumor cells is increased by PD-L1 blockade

Roberto Belluci and Jerry Ritz

No Block

PDL1 Block

JAK inhibitor JAK inhib. + PDL1

Can PD-L1 mAb help CAR-T?

CAR-T cells with bicistronic lentiviral vector expressing:

- anti-carbonic anhydrase IX (CAIX) chimeric antigen receptor (CAR)
- secreting PD-L1 antibody locally at the tumor site.

Eloah Suarez Wayne Marasco

PD-L1 mAb in the CAR-T vector improves treatment efficacy

Other combinations

THERAPEUTIC APPROACH

- Block multiple checkpoints (PD-1, PD-L1, LAG-3, TIM-3, CTLA-4)
- Activate stimulatory pathways (CD137, OX40, CD27, ICOS, GITR)
- Deplete/target immunsuppressive cells (Treg, MDSCs, M2)
- Target other suppressive mechanisms in microenvironment (IDO, TGF-B)
- Induce/Provide other anti-tumor immune cells (CARs, TCR-engineered T cells, NK cells)
- Reduction of tumor burden (Surgery, Radiation, Chemotherapy, Targeted therapy)

Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy

Christina Pfirschke,^{1,7} Camilla Engblom,^{1,2,7} Steffen Rickelt,³ Virna Cortez-Retamozo,¹ Christopher Garris,^{1,2} Ferdinando Pucci,¹ Takahiro Yamazaki,⁴ Vichnou Poirier-Colame,⁴ Andita Newton,¹ Younes Redouane,¹ Yi-Jang Lin,¹ Gregory Wojtkiewicz,¹ Yoshiko Iwamoto,¹ Mari Mino-Kenudson,⁵ Tiffany G. Huynh,⁵ Richard O. Hynes,³ Gordon J. Freeman,⁶ Guido Kroemer,⁴ Laurence Zitvogel,⁴ Ralph Weissleder,¹ and Mikael J. Pittet^{1,*}

More combinations

Cancer antigen release, uptake & processing

DEFICIT

THERAPEUTIC APPROACH

Nonimmunogenic cell death or insufficient neoantigens

Insufficient antigen processing/DC maturation

- Oncolytic viruses
- Chemotherapy
- Radiation therapy
- Cryotherapy
- Targeted therapy
- Epigenetic modifiers
- Blockade of phosphatidylserine
- Vaccines
- TLR agonists/STING
- GM-CSF
- IFN-α
- CD40 agonists

What happens when tumors respond to PD-1 immunotherapy

but then develop resistance?

ARTICLE

Received 9 Aug 2015 | Accepted 21 Dec 2015 | Published 17 Feb 2016

DOI: 10.1038/ncomms10501

OPEN

Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

Shohei Koyama^{1,2,*}, Esra A. Akbay^{2,3,*}, Yvonne Y. Li^{2,3,*}, Grit S. Herter-Sprie^{2,3}, Kevin A. Buczkowski³, William G. Richards⁴, Leena Gandhi³, Amanda J. Redig³, Scott J. Rodig⁵, Hajime Asahina^{2,3}, Robert E. Jones⁶, Meghana M. Kulkarni⁶, Mari Kuraguchi⁶, Sangeetha Palakurthi⁶, Peter E. Fecci⁷, Bruce E. Johnson^{2,3}, Pasi A. Janne^{2,3}, Jeffrey A. Engelman⁸, Sidharta P. Gangadharan⁹, Daniel B. Costa⁹, Gordon J. Freeman^{1,2}, Raphael Bueno⁴, F. Stephen Hodi^{2,3}, Glenn Dranoff^{1,2}, Kwok-Kin Wong^{2,3,6} & Peter S. Hammerman^{2,3,10}

Jason Gaglia Chen Zhu Vijay Kuchroo

Xia Bu Rosemarie DeKruyff

T cells in PD-1 resistant lung cancer

Shohei Koyama Esra Akbay

Increased TIM-3⁺ T cells in PD-1 resistant mouse lung cancer

Lung cancer patients that develop resistance to PD-1 therapy express higher levels of TIM-3

Mice that develop PD-1 resistance can benefit from PD-1 + TIM-3

Can we use TCGA mRNA expression data of tumor and normal tissue to guide immunotherapy development?

Immunoinhibitory B7s that can be expressed by tumors

Normal kidney vs ccRCC

ccRCC is extraordinary!

Highly inflamed

More PD-L2 More B7-H3 Less B7-H4 More VISTA More HHLA2

Sam Freeman

Expression of VISTA in Renal Cell Cancer

VISTA on tumor and cells in microenvironment

VISTA on cells in microenvironment

20x Jessie Novak, Ping Hua, Sabina Signoretti

It's a great time to be an oncologist or researcher

- PD-1/PD-L1 works on a wide range of tumors with
 - moderate percentage of responders
 - good safety profile

PD-1/PD-L1 gives us a foundation to build on

 With this success, human creativity has been unleashed and we're learning to do better

To be done

- How do we identify who will respond to PD-1 blockade?
- What are mechanisms of primary failure to respond?
 - Other immunoinhibitors ?
 - Failure of immune cells to infiltrate tumor?
 - No good neoantigens ?
- What are mechanisms of secondary failure to respond?
 - Expression of other immunoinhibitory receptors ?
 - Loss of MHC ?

Future of cancer therapy decisions

• Tumor Genome sequencing:

PD-L1/2 amplification, MSI, viral genomes → PD-1 therapy Identify which oncogenes are drug targets?

Identify neoantigens

Tumor Immunoevasion Score:

How much PD-L1, PD-L2, IDO, Galectin-1, Galectin-9, B7-H3, B7-H4, VISTA, HHLA2, Arginase, NKG2D-Ligands?

Choose best immunotherapy

Combine immunotherapy with best targeted therapy/vaccine

Freeman lab

- Julia Brown
- Guifang Cai
- Yanping Xiao
- Kathleen Mahoney
- Sanhong Yu
- Apoorvi Chaudhri

- Sarah Klein
- Xia Bu
- Ping Hua
- Baogong Zhu
- Yahui Hao
- Lilly Cai

Acknowledgements

Dana-Farber Cancer Institute

- Peter Hammerman
- Wayne Marasco
- Kwok Wong
- David Reardon
- Glenn Dranoff
- Margaret Shipp

Brigham and Women's Hospital

- Sabina Signoretti
- Scott Rodig

Emory University

Rafi Ahmed

Genetics Institute

Clive Wood

Harvard Medical School

- Arlene Sharpe
- Vijay Kuchroo

Beth Israel Deaconess Medical Center

- Vicki Boussiotis
- David McDermott
- Michael Atkins

U of Pennsylvania

- Jaikumar Duraiswamy
- George Coukos
- E. John Wherry

Kyoto University

Tasuku Honjo