

CAR T-cells in B cell lymphomas and leukemias

Cancer Crosslinks Gunilla Enblad 2016-10-19

Outline

- Clinical background
- What is a CAR cell?
- Clinical results
- Uppsala experiences
- Future

Background

Lymphomas in Sweden

- B-cell lymphoma 1700/year
- T-cell lymphoma 150/year
- Hodgkin lymphoma 170/ year

Leukaemia

- Acute lymphoblastic 100/ year
- Acute myeloid 350/year

Despite progress in treatment many patients still die of their disease

What is a CAR-cell?

• CAR-cells are autologous T-cells

UPPSALA UNIVERSITET

- Genetically modified with a transferred antibody domain (scFV) fused to parts of the Tcell receptor (Z-chain)
- The construct is delivered to the T-cells in the laboratory via a retrovirus vector

Maher J. ISRN Oncology 2012:1-23

CAR T-cells targets

- Most studies have been performed on tumours expressing CD19
- Expressed on B-cell lymphomas and leukemias
- And normal B-cells
- But not on hematopoietic stem cells or any other cells in the body
- Low likelihood of off-target effects

The history of CAR-cells

- 1:st generation
 - No co-stimulatory molecules, rapid clearance from the circulation, small clinical effects
- 2:nd generation
 - Co-stimulatory molecules added (CD28, 4-1BB (CD137)
 - Addition of lymphodepletion
 - Clinical effects
- 3:rd generation
 - CD28 and 4-1BB
 - On-going studies, better *in vitro* but *in vivo*?

The tumour micro-environment

- The tumour micro environment is often immune inhibitory
 - Regulatory T-cells, myeloid derived suppressor cells, some tumour associated macrophages
- Lymphodepletion necessary
 - Often cyclophosphamide and fludarabine

CAR T-cells in lymphoma and leukemia

Case report Porter et al. NEJM 2011.

- Patient with CLL
- Diagnosis 1996, requiring treatment 2002
- Treated with rituximab, fludarabine, bendamustine, alemtuzumab
- Chemotherapy refractory, p53 mutated. Bone marrow engagement and lymph nodes
- Pre-treatment with pentostatin 4 mg $/m^2$ and cyclophosphamide 600 mg $/m^2$ dag -4
- 2nd generations CAR 19 T-cell (4-1BB) July 2010

CAR T-cells in lymphoma and leukemia

Case report Porter et al. NEJM 2011 forts

- d 14 fever and chills- Cytokine release syndrome
- d 22 tumor lysis syndrome, fluids rasburicase
- d 23 normal bone marrow
- d 28 no palpable lymph nodes

C Bone Marrow-Biopsy Specimens Day -1 (baseline) Day 23 6 Mo

CAR T-cells in lymphoma and leukemia

Case report Porter et al. NEJM 2011 forts

Molecular remission October 2014!

Korchenderfer et al. JCO 2014

- 2nd generation CAR (CD28)
- 15 patients with B-cell lymphoma
 - 9 DLBCL (8 refractory)
 - 6 indolent
- Pre-treatment with
 - Cyklophosphamide 60-120 mg/kg d-5
 - Fludarabine 25 mg/m² d -5---1
 - One toxic death, one lost to follow up

Korchenderfer et al. JCO 2014

- DLBCL: 4 CR, 2 PR, 1 SD
- Indolent: 4 CR, 2 PR
- In total 9 responses ongoing 6-23+ months

B Before treatment

9 months after treatment

5 months after treatment

Maude et al. NEJM 2014

- 30 patients with ALL, 25 children, 5 adult
 - 26 B-ALL in 1st to 4th relapse
 - 3 B-ALL refractory
 - 1 T-ALL with CD19 expression
 - 18 previous allogeneic transplantation
- Pre-treatment with different chemotherapy, most often with
 - Cyklophosphamide 600 mg/m^2
 - Fludarabine 30 mg/m² d 1-3

Maude et al. NEJM 2014

- CR 27/30 1 month
- Molecular CR 22/27
- 2/2 CR with CNS eng
- 19/27 CCR
 - 3 allogeneic transplant
 - 1 DLI
 - 15 no more treatment

Toxicity of CAR-T cells

- Tumor lysis syndrome
- Cytokine release syndrome
 - Fever, chills, hypotension
 - Might require intensive care unit
 - Treated with Tocilizumab (anti IL6R)
 - Can be fatal
- CNS toxicity
 - Encephalopathy, self-limiting
 - Brain edema- three reported cases fatal
- B-cell aplasia

Clinical Success of CAR T Cell Therapy

2nd Generation (2G)

Antigen Recognition Costimulation - Remarkable effect in ALL (60-80% CRs across different trials at U-PENN, MSKCC, NIH)

Lymphoma more resistant a) physical barriers (stroma, endothelium) b) immunosuppression

CRs are possible if high dose preconditioning

60-120 mg/kg cyclophosphamide 25mg/m2 fludarabine 3-5x (Kochenderfer et al JCO 2015)

Summary of Clinical Results

- >100 published patients
- Lymph depleting pre-treatment necessary
- Fludarabine seems important
- $\geq 2^{nd}$ generation CAR T-cells are needed
- Long-lasting complete remissions can be achieved
- Effect seems better in ALL than in lymphoma

Summary of Clinical Results

- No clear dose response relationship between the number of injected CAR T cells and effect
- Weak relationship between tumour burden and response
- Strong relationship between tumour burden and toxicity
- Cytokine release syndrome and neurological toxicity can be serious or even fatal

CD19-TARGETING 3RD GENERATION CAR T CELLS FOR REFRACTORY B CELL LYMPHOMA OR LEUKEMIA – A PHASE I/IIa TRIAL

Phase I/IIa Clinical Trial for CD19+ B Cell Leukemia and Lymphoma

Aim

The study aimed to evaluate the feasibility of CAR T cells in patients with refractory CD19+ B cell lymphoma or leukemia by studying the tolerance, toxicity, biological effects and anti-tumor responses post treatment.

Prof Gunilla Enblad Asc Prof Hans Hagberg Principal Investigator Co-Investigator

Prof Angelica Loskog Sponsor

Dr Hannah Karlsson Trial Manager

CD19+ B cell leukemia/lymphoma

Inclusion Criteria

- Relapsed or refractory CD19+ B-cell lymphoma or leukemia
 - After autologous or allogeneic transplant or not eligible for transplant
- Measurable disease.
- Performance status ECOG 0-2.
- ≥ 18 years old.
- Fertile females/males must consent to use contraceptives during participation of the trial.
- Adequate bone marrow, renal, hepatic and cardiovascular function.
- Signed informed consent.

Clinical Grade (GMP) CARs

1) Production of gene vehicle (MLV-3G CAR) Center for Cell and Gene Therapy Baylor College of Medicine

The viral vector was produced and tested för sterility, identity and function.

2) Manufacture of 3G CAR T cells Vecura GMP Facility Karolinska Hospital

One batch per patient was produced and tested for sterility, identity and CAR expression.

CAR T Cell Batch Manufacture: 6-18 days

Procedure

- Inclusion
- Blood sample for T-cell preparation (30 ml) and biobank
- Biopsy for CD19 expression and biobank
- Manufacturing minimum 5 weeks
- Pre-treatment 1-2 months clinicians choice in order to control disease
 - After the first 4 patients all patients also received preconditioning with Cyclophosphamide 500 mg/m² d -3 and Fludarabine 25 mg/m² d-3--1

Procedure

- CAR T-cells was given as an intravenous injection
- Premedication with clemastine
- Monitored 2-24 h
- Bi-weekly blood chemistry for 3 weeks
- Weekly blood chemistry for week 4-6
- CT-scan after 3,6 9 and 12 months

Treatment Schedule

Cohort 1: without preconditioning (4 patients)

Cohort 2: with preconditiong: cyclophosphamide 500mg/m2, 3x fludarabine 25mg/m2) (11 patients)

S = Samples for toxicity, efficacy and research

Enrollment & CAR Batch Production

- 19 patients have accepted inclusion
- 18 CAR batches (1 failure)
- 15 have been treated (3 died prior to infusion)

CAR Batches: Phenotype

Effector T cells (CD45RA⁺CCR7⁻) Naive T cells (CD45RA⁺CCR7⁺) Central Memory (CM) T cells (CD45RA⁻CCR7⁺) Effector Memory (EM) T cells (CD45RA⁻CCR7⁻)

- 15 patients (7 male, 8 female), Age 24-71 years
 - DLBCL 6 (3 FL tr)
 - CLL 2
 - MCL 2
 - ALL 4
 - FL tr Burkitt 1
- All end stage patients with short expected survival

Adverse Events

Cytokine Release Syndrome (CRS)

Most patients had mild flu like symptoms only 3 were serious

1 of 3 received tocilizumab (aIL6R ab) to resolve the CRS all 3 required hospitalization

CNS toxicity

Many patients had mild symptoms that can be signs of CNS toxicity only 2 were serious and required hospitalization

Results

- CR in 4/11 patients with lymphoma
 - 1 CLL
 - 2 DLBCL
 - 1 FL tr to DLBCL
- CR in 2/4 patients with ALL
 - 1 Relapse after allogeneic trasnplantation
 - 1 Relapse refractory to chemotherapy

Summary of results

- 6/15 CR
- Median 5 months (3-18+)
- All but one patient have relapsed (CLL)
 - Remarkably good effect of additional treatment in 4 patients (2 DLBCL- gemcitabine, 1 CLL- ibrutinib, 1 MCL Flu/cy +RT)
- One ALL relapse CD19 negative

UPPSALA UNIVERSITET

Results

Months

CAR T Cell Survival Post Infusion

Monocytic MDSCs Are Present in Low Level In Responding Patients

High IL8 Level Correlates To Poor Survival ProSeek Proteomics (233 analytes)

Suppressive Milieu

Stimulating Milieu

Trial Conclusions

Clinical Responses

- 15 patients were safely treated with 3G CAR T cells
- 4/15 patients are still alive

Biomarker analysis

- CAR T cells have so far been detected >12 months post infusion
- Immune profile in blood is an important indicator of response

Myeloid suppressors seem to hamper CAR function

Gemcitabine Reduces MDSCs In Patients with Pancreatic Cancer

Gemcitabine Restores T effector/Treg Balance

Gemcitabine Reduces TGFbeta

Gemcitabine Does Not Affect T Cell Proliferation

A. Day 1

UPPSALA UNIVERSITET

Prof Gunilla EnbladAsc Prof Hans HagbergPrincipal InvestigatorCo-Investigator

Prof Magnus Essand Sponsor

Dr Tanja Lövgren Trial Manager

Conclusions

- CAR T-cells is a powerful new immunotherapy
- Can probably cure terminally ill patients
- Better in ALL than in lymphoma
- When interpreting results consider
 - Differences in patient selection
 - Differencs in preconditioning
 - Differences in CAR T cells

Conclusions

Issues to be solved in future studies

- How to get the CAR cells to act in the lymphoma tissue?
 - Immunosuppressive milieu?
 - Physical barriers?
- Lack of persistence of CAR T cells?
- Timing of the treatment?
- Combination with other drugs? Repeated treatments?

Acknowledgements

And all others involved!

Angelica Loskog Hans Hagberg Martin Höglund Helene Hallböök Malcolm K Brenner Margareta Kvitz Vecura

